E “AD=-AO71 223 SIGNATRON INC LEXINGTON MASS F/6 20/1
MEASUREMENT OF RANDOM TIME VARIANT LINEAR CHANNELS: (U)

SEP 68 P A BELLO

.....l. 2

I.NCI.ASSIFIED

=

JATE
FILMED

B—79

Db

o




Jlig it

L }IIII L}

oy
li2s s e

MICROCOPY RESOLUTION TEST CHART



b i

&
<

mem MOST ProJect —

—— — [ —

— Nid o il i § g’ ¢
NI N - ‘ -‘:LJN. ‘nc-
rLLcaren ©nd conuuiting Bree coce 817 ¢« TEL. 5E62-3365

MielLER ZSUILDING o« 354 MARRETT ROAD ¢+ LEXINGTON, MASBACHUSETTS 02173

co0S3I®
[ )
[ <
—
s
&y
et
>
)
—
D
=
-

MEASUREMENT OF RANDOM TIME VARIANT LINEAR CHANNELS

l - —
/ o= =
/ i,

by
r AT
Vil 1§ e %
L ¥ PA;lA..Llp A. Dello

SRS

S

ADAQ7Y1223

é /_‘D 14 septemver+10, 1968

DDC FILE COPY.




DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DDC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.




P B MEASUREMENT OF RANDOM TINME VARIANT LINEAR CHANNELS

AESTRACT

This paper concerns the problems of the measureability
and measurement of random time-variant linear channels,

T R TP A RERSE

: With regard to measureability, a new, less stringent channel
f measureability criterion is proposed to supercede the BL
product introduced by Kailath, Thiscriterion involves the
area of occupancy of the Donolzr-delay spread function (or
its dual). By using time and bandwidth constraints on the
input and output of a channel, the channel measurement

problem is reduced to the mczsurement of a discrete set

of finite parameters, Optimal measurement technigues are
described and their perfcrmances determined for the two
cases wherein the channel correlation function is known
and unknown,
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we shall propose a new criterion, SA<<1, where the parameter S

T , = o & el Rl

MEASUREMENT OF RANKDOM TINMZ-VARYING LINEAR CHANNELS

I, INTRODUCTION

The measurement and characterization of communication
chénnels has received increasing attention in recent years due to
the projected widespread use of digital communications. Reliable
high speed digital data transmission requires considerably more
knowledge and equalization of channel characteristics than does
conventional highly redundant analog transmissions. This
paper is concerned both with the measureability and with the

measurement of random time-varying linear channels,

The problem of the measurement of system functions (input-
output relations) of random time variant channels differs from
the classic problem of filtering a random signal in that even in
the absence of noise the random system function may be non-mea-
sureable, It appears that this fact was first pointed out by
Kailath [1] who developed some measureability criteria and in-
troduced a channel parameter called the "spread factor", This

parameter is the product of Bm the maximum rate of variation

of the system in Hz, by Lmax’ iie maximum multipath spread of
the channel, For reasons which will become clear subsequently,
we call the product Bmax Lmax the "rectangular" spread factor of the
channel and derote ‘it by SR' Kailath demonstrated that the
system functions of a linear channel can not be measured if

Sgp > 1 and if no further information than Bmax'Lmax are known
about the channel, Unfortunately the criterion SR < 1 has been
uncritically accepted subsequently as the channel measureability
criterion for random time-varying linear channels, without pay-
ing sufficiently careful attention to the conditions under which
it was derived. In this paper we shall show that the criterion

SR < 1 is not the proper channel measureability criterion and
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is called the area spread factor cf the channel, Since it will
D& shown that‘SA = SR’ chazanels wnich were hitherto thought
urneasureable are actually measureable,

In defense of Kailath's result it is worth pointing out
that our new criterion does not necessarily have to be regarded
&s in conflict with Kailath's results since we assume somewhat
more Xnowledge of the fading dispersive characteristics of the

a - ] = G A- - S G L ]
channel to be measured than the gross parameters Bmax and Lmax
Kailath was very careful to point ocut that additional channel
knowledge would generally allow exact channel measurement even
thou B = there is a moot philosophica
though e Lmax 1 However, 3 oot philosophical
point here: if the channel is wide sense stationary (WSS) then
not only Bmax' Lmax but also the additional gross channel infor-
mation needed in the present development may be determined with-

t a i he product - 0 e othe
out regard to the size of the product Bmax Lmax n the other
hand, if the channel is too nonstationary it is not clear that

2 £ 7 3 3 3 $ s

Bmax and Lmax can be meaningfully defined, Thus, in those cases
where B ] aningf Gefi and mea ed
here ke and Lmax can be meaningfully fined measured,

- : s : . ;
Bmax Lmax 1l is too stringent a criterion to use in deciding

whether the system functions of a channel may be measured,

The new channel measurement criteria and optimal measure-
ment procedures developed here are based* upon the input-output
representation called the Doppler-Delay Spread Function [2].
Discrete representations of the channel are used corresponding
to simultaneous input time and output bkandwidth constraints [2].
The Doppler-Delay Spread Function V(V,£) provides a phenomenolog-
ical model of the channel as a continuum of differential scat-

terers subjecting the transmitted signal to a complex gain
V(v,§)dvdf for scatterers providing delays and Doppler shifts

PO VS I Nt A
An equivalent development exists for the dual [3] system

function, the delay-Doppler soread function, U(§,Vv).
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chaanriel, We have sketched four

4

Re i explicitly indicated, The

the area of the occupancy patte

Examination of these figures shcow that

shape of Fig, 1(e) is Sp = Sz.
is the area of the smallest re

the §,Vv axes which just enclose

ecause of the discrete ch
oroblem of channel measurement
a se
he

an unknown nonrandom vector and

of parameters. We ccnsid
-

o
th ct

irst approach we assume th

the channel parameter vector o

an ensemble with known correlatsi

of time-invariant filters. In
cdomain of estimation theory
For hoth cases we determine the
mators and their performances.

The work reported here at

éeiine the region of the
fectively nonzero as the Delay-

‘e* Ceccupancy Pattern cor simnliy thie Occupancy Pattern

‘poszible delay-Doppler occupancy

max
shaded area of each figure, i.e.,

patters in (a) -~ (d) of Fig. 1 with the parameters B and
T

ra, 1s the new spread factor SA
only for the rectangular

The rectangular spread factor

ctangle with sides parallel to

s the occupancy pattern.,

hannel representation used, the

can ke reduced to estimation of
er two different approaches. In
& chinnel parameter vector to be
in the second approach we assume
be & random vector selected from
icn matrix. In the former case

prcach is directly applicable and
9 4=

- to estimate the impulse response
“he latter case we enter the

riginally made popular by Wiener [5].

cstructure of the optimum esti-

tacks a problem area similar to

that studied by Bar-David [6] who considered the direct estima-
tion of V(Vv,§), primarily for radar targets, the case of
stationary and most physical communication channels V(v,§) has
the character of nonstationary white noise in the € and v vari-
ables and the direct measurement of V(v,§) does not appear to be
a useful occupation, However, our use of input time and output
bandwidth constraints leads to discrete channel models whose

parameters are finite and whose measurements are meaningful,
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II, CHANNEL RZPRESENTATION

There exist many different system functions for represent-

ot

e )

ing the input-output of time verying linear channels., Various

>

schemes of categorization have been presented [1172][7], but

&
the =uthor is partial to his own [2] ané assumes that the reader

'f

ﬂ\
O'

&ccess to this work, For th elcpment in the present

as
per we need only the input-cutput relation corresponding to

]

=
the Doppler-delay spread function, i.e.

wie) = [[2e-8)e 327V (EDy(y ) avas (1)

- 3 s z ! = 2
wnere z(t) is the input znd w(%t) is the output®.

Wnen time and/or bandawidtn constraints exist upon the input
and/or output of a channel it is possible to replace the original
channel by a simplified canonical channel model which has the
seme input-output behavior as the actual channel. Such channel
mocels were first described by Kailath [1) and further developed
by the author who in [2] introduced the models used in the fol.
lowing discussion, Following the same general procedure as used
by Kailath to derive his measurzbility criterion we derive the
new channel measurability criterion by placing certain constraints
upon the input and output of the channel and employing a corre-
sponding canonical channel model representation for the original
channel, Our results will differ from Kailath's because the
channel model we use, based upon V(V,E) allows a simple direct
inclusion of the more complicated Delay-Doppler Occupancy Patterns
such as shown in Fig, 1,

2In this paper we use complex envelope notaticn throughout without
explicitly indicating so in the text Thus z(t) and w(t) are

the complex envelopes of the actual real input and output pro-
cesses,
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In [2] (Section VI A(c)) it i: dexonstrated that if the

input to a channel is confined by & time géte to the time inter-
- T T o . . : ‘ =
val tl =0 o A ti + 3 &nd the output spectrum is confined by
5 : . - Eo o W W
& band pass filter to the freguency interwval 0" 3 TIE fo 3,

fen in place of the actual chennel with Doppler-Delay Spread
unction V(Vv,£) one may use a channel whose Doppler-Delay Spread
Function V(Vv,§) has the sincular form,

VIv,E) = I v__6(v-B) s(g-D) (2)
m.n mn = i W

wnhere 8(+) is the unit impulse,

ap Jome, (Vv-B)  —jomE (g2
Von = JJe S e
sinch(v-%)]sinc[W(g_%)]v(v'g)dvdg (3
and
sinc x = §3§;E§ 5

An alternate expression for the gain coefficients th is
given by

T W
5 3 rfo*"i' -j2rge  jorgne
v = i"ﬁf wd e M(t,f)at &t (5)
£, g A
i 2 o 2

where M(t,f) is the Frequency Dependent Modulation Function 2],

Examination of (5) reveals that V.n S the Fourier coeffi-
4
cient in a bivariate Fourier series expansion of M(t,f) in the




e iy

i V2 W
uency interval (tl CEt < oim, [ -l f < fo+5)

. i L g
Also, fr om (3) we see that the gain coefficient V nn S essentially

& two dimensional sampleé version of the original Delay-Doppler

Spread Function, the sampling téking place with "pulses" of width

(@)
Hh

i

D

e
the order of 1/T in the Vv direction and 1/W in the € direction.

B ok it st o e ot

mi

E | The discrete channel mcéel, wnich consists of a finite set

(o)
Hh

delays and Doppler shifts, its shown in Fig, 2, where we have
used the notation

fj_ ‘x‘ <:'§-
Rect(x) = (6)
0 x| = 3

If we define the input to the bend limiting filter as wl(t)

&nc the gated channel input of duration T as z,(t), then (2) tells
g p 1 )

-

us that the following discrete channel relationship applies:

i Jzﬁ%(t—%)

The relationship between the actual output w(t) and input z(t) is
somewhat more involved. Form Fig, 2 we note that the actual out-
put w{t) is obtained by passing wl(t) through a bandpass filter
of Landwidth W cps centered cn fo cps. To simplify the notation
we shall assume fo = 0, i.e.,, the receiver is centered on the
nominal "carrier" frequency. Then

wit) = wl(t)®w sinc Wt (8)

If the bandwidth of wi(t) is less than or equal to W, then

w(t) = wy (t) (9)




input~-output relaticn becomes

t-:i - i 2”—( t-—)

wit) = Z T Rec(

Since the input signal is time

cime gated and thus not bandlim-
ited, strictly speaking w,\b) cannct ke bandlimited and (10)
cannot be used., Xowever, since we &

ve acsume that both the bandwidth
£ z(t) and W greatly exceed 1/7T, t=n

y the time gating has no practicel

(o}

o
len

andwidth broadening caused

o'

significance, One may then
assume that the bandwidta of wl(t), W,, eguals the sum of the
bancéwidth of z(t), W_, plus the maxizum Doppler spreading of the

channel, as determined freom the Delay Doppler Occupancy Pattern.,
We shall generally assume

= 1
W, w (11)

and use the simplified input-output relationship (10)

In closing this section we should
tistical relationships between the ccef ients V s and also the
way these coefficients vary with the location (ti,fo) of the
ngle over wnich the channel is being repre-
To simplify the discussion we shall assume a WSSUS

(wide sense stationary uncorrelated scattering) channel for
which [2]

like to discuss some sta-
.:
4-

time-Ifreguency recta
sented,

Vv¥(v,8) V(H,m) = S(§,v) &(n=E) 8(H-V) (12}

where S(§,v) is the Scattering Function of the channel,




A g e < T S
it is shown in L2. that
0 i m#r , n#s
*
Y ~ 13
mn rs (13)
1 (G )
w0 S\ﬁ“—f’ i m=r , n=s
when the Scattering Function varies verv littl

€ of the order of 1/W and changes in VvV of the
‘nas for the WSSUS channel and & sufficiently smooth Scattering
unction the gains of the discrete poi
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uncorrelated and the strength oI the reflection from & particu-

lar scatterer becomes propocriiona
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Scattering Function at the same value of Delay and Doppler shift,

The gain coefficient Vﬁ_ may e regarded as a random process

a
wnich varies with ti and fo' For notational convenience we drop
the subscripts and write

sinclT(v-n/T)] sinclW(§-n/W] V(v,E)avE (14)

The correlation function of an(t,f) is readily fcund to be

*
an(t,f) an(t+T,L+Q) = Rmn(T,Q)

j2ma(E-x)

r jzn"'(\)—%)
Ie 2

sinc’[T(v-B)] sinc?[w(s-3)] s(g,v)atav  (15)




g that T enocuch so that S(§,v) varies
little in a § interwval Y interval 1/T, the sinc func-

tions in the double integr become impulsive by comparison to

.lowing simple result:

by i

€(§,v). Then we have the

il sl <z, laf <w
Bt (16)
Rmn(0,05 g ,

| 0 s Jel 22, ol =w

~

’E
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III, NECESSITY OF AREA SPRELD FACTOR CRITERION

In this section we shall demonstrate the necessity of the
area spread factor criterieon., For T > Ltot and W >> Btot the
numper of V coeificients which are significantly different

£
mn

from zero will be determined by how many rectangels of dimension
1/TW can be fitted into the Calay-Doppler Occupancy Pattern,
i.e., into regions of the v,§ plane over which V(v,E) is signif-

icantly different from zero. Ve

rave already illustrated such
regions in Fig, 5 and defined the area of such a region to be
SP' In order to ignore ed .né thereby simplify our

&
discussion we assume T >> vy W 2> B, .. Then the numbar of

tob tot
o coefficients of significant amplitude can be expressed as
s
N = Sp(TW+a) (17)

wnere @ is a number accocunting for edge effects which becomes
i a3

negligible compared to TW as ané W become large,

If the multipath spread of the channel is Ltot then the
T+ L
51

duration of the output signal is
early independent (complex) samplies

néd the number of lin-~-

tot)
if W is taken as the bandwidth of the received process. Assuming
i

a
is zpproximately W(T + 1L

W,T large we may express the nuimber of independent observations
as

Noye = WI + B : (18)

where 8 is a number accounting for edge effects (including samples
over Ltot) which becomes negligible compared to TW as T,W becomes
large,

Clearly, in order to be able to solve for the Nch unknowns

& ;
Nch i Nout (19)




WT + 8

e 1 for TW > 1 (20)

wnich demonstrates the necessity of the area spread factor mea-

surability criterion,




IV, SUFFICIENCY OF AREZA SPREZAED FACTCR CRITERION

In order to demonstrate the sufficiency of the area spread
Lactor criterion it is necessary to demonstrate a procedure whereby
the set {G*m} may be cdetermined if S, s 1,

b

We assume that the Delay-Doppler Occupancy Pattern of the

channel is bounded by & rectangle whose lower left hand coordi-

M
Biot ® (21)
N .
Ltot =T (22)

In the discussion to follcw we adopt the notation:

g o U Bl -
R WE g ) (23) ,
1
5 Z.B
o, ® 2y (t-5+57) (24)
jmoe ?
Yp = 2, @ (25)
jlm+m_)0Op.
- (=} "0
®an = vmo+ m, no+ne (26)
P~ TW : (27)
2T
8 = &= (28)
T
Py = \Eg=B0F . (29)




IZ <he output is sampled &t the Nyguist rate the resulting
set ol samples {w%} providss the minimum rumber of parameters

necded to represent the received signal, In terms of the fore-
¢going notation

- % % jma(&'“je (30)
s n=0 m=oh‘n o -

Since m, &nd p; are assumed known, krowing {yp'Gmn] is equivalent

to Xnowing {z : I8 However, we have chosen to deal with the

, v
P’ mn
ormer because of the simplified noctation. If the input waveform

s known (30) provides a set of P + N

i

b

inear equations in

+ 5 §
the unkrown channel gain coerfficieants {G__} (or {th]). The num-

O)

er of Gmn is approximately TWS,.

Equation (30) may be expressed in the form
fwl = [¥] [G) (31)

where the matrix [Y], partitionsd into column vectors,has the form

| :
LY- LYOO‘Ylo!.'.IYMO‘Yol‘Yl:‘.l...lY;':ll'..‘IYON!Y:LN"...‘YMN]
(32)
and the column vectors w, Ymn' and G are given by
r <
Yo
-
W, )
(w] = (33)
YWpaN
- -

14 S
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If none of the {Gmn} (0=m=HNM 0

£ N) are zero, then
the occugancy pattern has the rectangular shape of Fig, 1(e¢) and
the areea spread factor is the same as Kailath's spread factor.
Wasrn some of the {Gmn} a&re kXnown to be zero, the matrix {y] may
c¢ simplified by omitting columns - the column Yép being omitted
if.G is zero

gp 5

In order to prove the suificiency cf the area spread factor

critéerion it is necessary to find &t least one transmitted signal,
i.e., at least one vector {yo,yﬁ,...,y }, for which the set of

equation (31) is consistent., These eguations will be consistent

if thne vectors {Yﬁn} constitute a lirearly independent set, A
necessary and suificient concition for & set of vectors to be
linearly independent is that the Cramian of these vectors does
rot vanish. The Gramian is the determinant of the matrix [E]

iven by

(] = [¥*]T [¥] (36)

The matrix [E] is Hermitian symmetric. It is also non-nega-~
tive definite since, if [X] is a column vector

(x*1T [E] [x] = [y=x*]T [¥x] z o ' (37)

We now examine the structure of the matrix [E]., Consider the
typical term in the matrix:

% 1%
cmn,rs = [Yﬁn] [Yrs] k¥

From (34) we note that iﬁn Giffers from YOO in a time shift of n
units (n/W sec) and a frequency shift of m units (m/T cps). The
inner product (38) is thus found to differ from the ambiguity

function of YOO only by a phase factor, i,e,,

16




(39)

i oy o ipté
; X(jm) = - SR
F jp; 18 jzﬂﬁt
; - i n <
- =e  * Wiz () z(e-F) e T a  (40)

in which the integral representation

H

ollows from an application
of the sampling theorem,

One way to make the matrix [E] ncnsingular is to force the
off-diagonal terms to be suifficiently small compared to the
diagonal terms. The diacgonal terms are all equal

| : : T/2 -
E | Tisan ziypﬁz = lgeffac = 2]z(t)12 at (41)

If one could find a time function of eifective bandwidth W- ¢ :
(with €= 0) and time cduration T whose ampiguity function could

be mede sufficiently small at the set of lattice points (%,ﬂ)
(exciuding (m=0,n=0) of course), then apart from & constant factor
(E] would be essentially an identity matrix. Although there are
undoubtedly simpler ways in which to make [E] nonsingular, there
are sound reasons for constructing the [(E] matrix with small off-
diagonal terms. In the following section it will be shown that
such a choice minimizes the variance of the measurement error in 3

the presence of noise and greatly simplifies the structure of the
i optimum estimator,

f It should be recognized that the ambiguity function of a 1
signal with time duration T and bandwidth W cannot be forced to
be identically zero at the complete set of lattice points since

17 i




P

L WL
Ix(&.2) 1% ~ wrix(0,0) |2 (42)

When {y } is chosen to ke & maximal length shift register
sequence of =1 8 it is readily shown from the ambiguity function
of this sequence (9] that

lc
pg.rs 1 s~ o, gfs, TW>> 1 (43)

c
mn,mn W

From (42) we see that this is the smallest level that the
iity function can have if zll the side lobes are uniformly

~gu
sma&ll., 1If only a small fractiocn ére to be made uniformly small,
n A

s in the present case, and the othecrs are unconstrained it should
be possible to make them ccnsiderably smeller than 1/JTW. Scme

- . . = . O .
results of Price and Hoistetter _10. are suggestive here., Their

wOrk suggests that it should be possible to clear away a svmmetric
convex region of low level ara

[
b
(&)
g'
»
nw o

origin of the ambiguity
'

function as long as this area is les han four, Since we deal

with more general areas their results would have to be generalized
to be made applicable, Eqguation (43) states that the off-diagonal

terms of [E] can be made as small as desired relative to the
diaconal terms. Unfortunately, since the order of the matrix [EJ]
isTWSE,where SAis the area spread factor, the reduction in size
of the off-diagonal terms is accompanied by an increase in order
of the matrix [E] and the well known techniques for determination
of matrix singularity from inspection of the elements of a matrix,

such as those dealing with diagonally cominant matrices [11],
cannot be applied,

There is a simple physical argument for asserting that when
Sp > 1 there must exist transmitted sequences {y } for which [E]
is invertible, [E] will be invertible if it is posx»ive definite,
i.e., if the quadratic form in (37) is positive no matter what

18 :
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vector X is chosen., But this quadratic form [y*x*]* [¥x] is just

the total energy at the ocutput of the channel when the input is
= = " = = - s 3 LY -
Y] and the channel gains are L[XJ]. Since LY] is of length TW and

{X] of lenctn Sp,TW, when S, < 1 <he dimensionality of [X] is less
than that of [Y]., While decenerate forms of [¥] could be chosen
[X] could be adjusted to Torce the output to zero for
all time, it is intuitively clear that there must be infinite
sets of suitably chosen [Y] for which no [X] can force the output

to zero.

(6]

a =

Assuming that [E] is invertible, we may solve for [G] with
= s e : ik T
the aid of [E] by noting that if (21) is pre-multiplied by [¥*]
and then by [E]-l there results

-1

(6" = 172 y*T [w (44)




V. MEASUREMENT IN THE PRESENCE OF NOISE:
UNKNOWN CHANNEL CORXELATION
FUNCTIONS

We consider now the prcblem of measuring the coefficients

G Y
¢ mn-
becomes

. x = : - £h . 3
in tne presence cf noise, The 2 observed signal sample

& n=0 m=0 o Gmn 1 2,=O,1,2,...,P+N+1
(45)

or in vector notation
[w] = TYJ[G] + [N] (46)

where nL are the noise samples and N is the corresponding noise
vector.

The method of least squares selects as estimates of Y
those parameters {Gmn} which make the vector
-

W] = [¥][6] o {
&s close as possible to the observed vector in the sense of min-

imizing the energy of the difference vecter, w - w. These esti-
mates satisfy the equations

[Y*]T Y[é] = [Y*]T fw] . (48)

or in terms of the E m&trix

(63 = (B3 [¥ey” [w (49)

20 ; 1
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<L, by proper selection of the transmitted signal [E] can
¢ made essentially a unit matrixz, i.e.,

-

@)

(E] ~ [1] (50)

wnere we have normalized

A A T R AR e

o

é E it =1 n ' (51)
then the estimate becomes

6 7 = [v*37 [w) (52)

An examination of the right hand side of (52) reveals that when

TE] is an identity matrix the estimator is realizable as a matched
fiiter bank. Thus, from (52) and (

is given by

)

'
36) the typical estimate s

e T s " ~jm(k-n)eg
on = [Ypnd (W1 =Z W 9,
.27 n
& - (t=)
=W [ e(t) y (t-B) e B
(53)
where, to simplify notation, we have defined
jm_e
y(t) =z (¢, -Z+t)e” © (54)

In words, Gmn is estimated by passing the received waveform
through a filter matched to a time and frequency shifted version

21 ;




of y(t), where the time shift is n/W seconds and the frequency
saift is m/T cps. If [E] cannot e regardeé as & unit matrix
{ i

-
ter bank must be followed by the linear

Aside from ease 0f instrumentaticn there is another reason
given transmitted

rror variance is

5]

&
minimized if [E] can be made & unit matrix The proof is essen-

tially identical to Levin's proof [47 for the time-invariant
channel., For white noise the covariance matrix of the estimate

-~

vector [G] is given by

[Cov & = [6 &7 - (367
= | (55)
whnere
on - l—r:’V'_z (56)
Levin [47 shows that if the diagon

s of a positive definite

[ ]
bt
rl

3 @

5

=k

{8

s
-

riX A are unity, the diaconal elements of the inverse matrix
A™" will reach the minimum values of 1 if and only if A is a
unit matrix., Since the diagonal terms of [Cov é] are just the
error variances, these will be minimized if E can be made into a

unit matrix, Thus the minimum estimation error is

2 _ ; 2 2
e = 1L |G, - 6 1% =, ° TWS, (57)




For the convenience ¢Z the

(I)

ng-neer we now compute an input
&énd output SNR assuming a WSSUS c“annel. As our output SNR we

2 o 2 am
IZlen? ZL'U,___,,]! T S wxr-\ = ‘ ‘2
p ™ = S v iy
ok R TWS, g, Tw)2SA°’nz p=0’ P

(58)

where S(E,y) is the Scattering Function ard we have made use of

As the received signal power we take the ratio of received
signal energy to the time interval T. Then if the noise power is

computed in the observation bandwidth, W, we find that the input
SNR is given by

2 b O~ I ..q o
sfle i EE Ohen
in = iy e Lol
™ o (Tw) Oy
and the ratio of output to input SNR bounded by
D
ouc < ‘§1__ (60)
Pin A '

where SA is the area spread factor, and the equality obtains when
[(E] is an identity matrix,
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VT, M’ASUREK:TT IN THZ PRESENCE OF NOISE:
KNOWIN CHANNEL CCRRILATION
FUNCTIONS

Trie previous section was concerned with optimal channel
measurement for unknown channel correlation function, On the
basis of experimental evidence ané theoretical considerations

appears reasonable to postulate & Qu

o

€t si WSSUS channel model
for many time variant channels., In this section we shall assume
such & channel model and white Gaucsian noise and determine a

s

quared error linear channel estimator. Wnen the

)
p
o
3
ck
by
(o
La]
® o
0)

criannel fluctuations are complex Gauss ulting estimator

so the unconstrained minimum mean sqguare estimator. The

'l
1)
o
O =t

roacin used is called Bayes estimatcion and may be found exten-
ively in the literature. A recent reference is Balakrishnan rej.

o describe the optimum estimator we must define the moment matrix

(A] = [61[G" ] (61)

For WT large we may use (13), which makes the )\ matrix diagonal
with the typical term on the diagonal given by

O] = (62)

For white noise the optimal estimate is given by

o % -1
(et ¢ o %y gy o (63)

The inversicn in (63) can always be performed since the unit
matrix [I] is positive definite and the sum of two non-negative
definite matrices is positive definite if either is positive

fefinite, By factoring matrices Eg. (63) may be expressed in the
alternate form
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[6] = {0, [A]™ + [ENTIY T [w] (64)

A comparison of (84) with (4S) reveals that the least squares
estimdte assuming the chrannel unxncwn differs from the minimum

mean sguared error estimate assumincg the channel Gaussian only in

| =

& repiicement of the matrix [E] in the former case, by

[A1 . The matrix g_2[,7 = is diagonal for TW sufficiently
nd from (58) and (60) tne tyrical term is proportioned to

the area spread factor divided by the input SNR, At large input

SNR or very low spread factor the two estimates (49) and (64) be-
come identical, while at sufficiently iow input SNR the matrix [E]

can be ignored and the estimetor bec

0

es essentially the matched
filter bank previously di com (64) it is readily seen
that when [E] may be regarded & 1, the receiver is a

.

s a
maccned filter receiver at all SHR's with weightings dependent

upon the strength of each path.

The estimator (63){(and {64)) minimizes the error term

o~ S| .

From the general results of 87, the error in ocur special case is
Jo

2 2 5 -1 ]
; e = o “Teie TIAYT * (B)) (66)

wnere Tr[A] is the trace of the matrix [A] (thr sum of the diagonal
terms),

It appears intuitively obvious and it may be proven that
the measurement error will decrease when statistical knowledge is
made available, To illustrate this point in the simplest situation
consider the case where [E] may be taken as the identity matrix,
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SRS

> (67)

which by comparison with (57) iz =een to e less than the error

when the channel scattering furnction is unknown.

The estimator discussed in this section differs from that
of the previous section in that it distorts, i.e., the "signal"
component of the estimator cutput éiffers from the channel complex
gain vector by a linear trancfcrmation. As a consequence there
&re actually two types of errors: & lLianear distortion error and
&n additive noise error. The mcan scuared error €2 in (&6) is
irfluenced by both types of errors. From (€4) and (46) it is
readily seen that [H], the signal component of the estimator out-
put is given by

(8] = £(6) = [0 7" + (21" [2316) (68)

where £ denotes an average over the additive noise only. It is
clear that the additive noise coxponent of the estimator output,
, 15 given by

M) = o (A" + (E13 Ryt g (69)

An output signal-to-noise ratio based upon the ratio of the
strength of [H) to the strength of [M] can lead to physically
nmeaningless results because [H] and [G] are related by

: :
Bon ™ %unn * Eg BanrsCrs (70)
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B s

L]
wWaere and g are constantes and the prime on Y
Cnn 38 Rmnrs 2 iStanc { € DL Es denotes
woulé eqgual 1 and the
O 8. In practice, however, the amplitude factor B € 3
and the interference term T

exclusion of the mn tern.

. G will be present, When

tne cain coefficients G = e uncorrelated the second term in
s
E (71) may safely be regarded as “noise” and the output signal

{ strength identified as

Lo ates e
\

2

FE|tg] |Gl (71)

Wioen the double sum in (70) is correlated with the first term,
the signal term must be identi

[
’.l
0
o
o
0]

the sum of the first term
&and that portion of the double sum correlated to the first term,

When E is the identity matrix and the G __‘'s are un-
uln
correlated

8] = [op 3™ + 111 re) (72)°

B

where the matrix gnz[A]'l + I is diagonal. In particular

_ 1
By = R PP Cnn (73)
n 7 Prn'!

>

so that in this simple case there is no uncorrelated part and Ry
is "all" signal. The signal output and noise powers are then

rE1T[H] = %3 > (74)

2
1Can |
2

2 "
[1'*°n /'Gmn! ]
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¥ 3 m rr k| r*-T-}
UL TTCRY = Tx MY |
o 2. =1 ST T -
= ir En [1\3 * L;] n]
o
sa
= T — 2 (75)
0 2 2
1+g “Ll1G 1
L a comn _J
When all gain coefficients nave the same strength
2 2 \
Bl =18 (76)
it is readily found that
2
IG| 0
- SR« . | :
Pout ~ - (77)
%n A

which is the same as for the case wherein the Scattering Function
is unknown and [E] = [I] (c.Z. €0),

Although in some cases xnowledge of the scattering function
may provide little benefit when [E] is "close" to an identity
matrix, ore may show that when E is nearly singular the measure-
ment error for unknown channel statistics becomes very large com-

pared to that when the statistics are known, In particular, sup-
pose that E is singular so that the measurement technique of the
previous section fails, We now determine the performance of the
present technique., To simplify the computation we shall confine

our attention to the computation of the mean squared error ez at
large input SNR's,




Let us suppose that al

!
]
U
[l
ci
9]
“
nl

re of equal strength, so that

———

rn] = 1613713 ' (78)

The matrix E being a non-ncecitive definite Hermitian Symmetric
matrix may be factored in the form

*
E =’y S50
waere Q is a unitary matrix

rQ*]T = _rQ]'1 (e0)

and [\1 is a non-negative diagonal matrix whose entries are the
eigenvalues of [E],
Using (78) - (80) in (66)

62 = Tr{[Q]‘l o +—1-;[UJQ}‘1 (81)

Since the operation rQ]'l[.i[Qj is a similarity transformation it
Goes not change the trace of the matrix. Thus

s, BB Tta o
k=1 2 x=1

NS § + CAR

& K SA
n
where is the kth eigenvalue of E. As . /S, becomes large
M in” A
p %
1m 2 1612 .0 as S0 - (83)

it A
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where O is the number of zerc eigenvalues,
measurement error is given by

2 2
€ 2

2 - 2
zzlen' 1WSA|G!

wé note that for E singular and uncorrelated G;ns

-

n = e
TWSA

compared to the length of the vector [G].
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Since the percentage

(84)

(85)

zero eigernvalue is small







